POMDPs and Blind MDPs: (Dis)continuity of Values and Strategies

¹Institute of Science and Technology Austria (ISTA)

Raimundo Saona POMDPs and Blind MDPs: (Dis)continuity

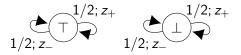
Continuity in Stochastic dynamics

(Deterministic) (dynamic)

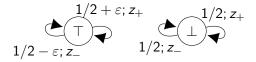
Similar? stochastic dynamic

Stochastic dynamics (MCs) must consider structure when analyzing continuity.

Continuity in Partially Observable Stochastic dynamics



(Static) partially observable (stochastic) dynamic



Similar? partially observable stochastic dynamic

Belief dynamics are fragile to structurally preserving changes.

Continuity concepts

- Value-continuity Value of similar POMDPs is close
- Weak strategy-continuity
 Some approximately-optimal strategy is still approximately-optimal in similar POMDPs
- Strong strategy-continuity
 All approximately-optimal strategies are approximately-optimal in similar POMDPs

Model	Continuity		
	Value	Weak strategy	Strong strategy
Fully-observable MDPs	Yes	Yes	No
POMDPs	No	No	No
Blind MDPs	Yes	Yes	Yes

Theorem: Deciding whether a POMDP is continuous is **algorithmically impossible**.

Remarks

- Blind MDPs are strictly more well-behaved than POMDPs
- Blind MDPs are strictly more well-behaved than MDPs

Model

A Partially-Observable Markov Decision Process (POMDP) is a tuple $\Gamma = (States, Actions, Zignals, p_1, \delta)$ where

- States is a finite set of **states**;
- Actions is a finite set of **actions**;
- Zignals is a finite set of **signals**;
- $p_1 \in \Delta(\text{States})$ is an initial distribution;
- δ : States × Actions $\rightarrow \Delta$ (States × Zignals) is a probabilistic transition function.

Special cases:

 $|\text{Zignals}| = 1 \implies \text{blind MDP}$ zignal = state \implies (fully-observable) MDP

Model

- strategy $\sigma \colon \bigcup_{n \ge 0} (\operatorname{Actions} \times \operatorname{Zignals})^n \to \Delta(\operatorname{Actions})$
- play $\omega = (s_n, a_n, z_{n+1})_{n \ge 1} \subseteq \text{States} \times \text{Actions} \times \text{Zignals}$
- probability $\mathbb{P}_{p_1}^{\sigma}[\Gamma]$ and expectation $\mathbb{E}_{p_1}^{\sigma}[\Gamma]$

belief

$$\mathbb{P}_{p_1}^{\sigma}(S_m = \cdot \mid \forall i \in [m-1] \ A_i = a_i, Z_{i+1} = z_{i+1}),$$

- reward reward: States \times Actions $\rightarrow \mathbb{R}$
- objective payoff(ω) is one of

$$\begin{split} \liminf_{m \to \infty} \frac{1}{m} \sum_{i=1}^{m} \operatorname{reward}(s_i, a_i) & \limsup_{m \to \infty} \frac{1}{m} \sum_{i=1}^{m} \operatorname{reward}(s_i, a_i) \\ \liminf_{m \to \infty} \operatorname{reward}(s_m, a_m) & \limsup_{m \to \infty} \operatorname{reward}(s_m, a_m) \end{split}$$

Model

value

$$\mathsf{val}(\mathsf{\Gamma}) \coloneqq \sup_{\sigma} \mathbb{E}^{\sigma}_{p_1}(\mathsf{payoff}(\omega))$$

• ε -optimal strategy $\mathbb{E}_{p_1}^{\sigma}(\operatorname{payoff}(\omega)) \geq \operatorname{val}(\Gamma) - \varepsilon$

Special concepts

structural equivalence

$$\mathsf{supp}(\delta(s,a)) = \mathsf{supp}\left(\widetilde{\delta}(s,a)
ight)$$

• ξ -similar POMDPs For all s, a, s', z,

$$\frac{1}{1+\xi}\,\delta(s,a)(s',z) \ \le \ \widetilde{\delta}(s,a)(s',z) \ \le \ (1+\xi)\,\delta(s,a)(s',z)$$

Model	Continuity		
	Value	Weak strategy	Strong strategy
Fully-observable MDPs	Yes	Yes	No
POMDPs	No	No	No
Blind MDPs	Yes	Yes	Yes

Theorem: Deciding whether a POMDP is value-, weakly strategy-, or strongly strategy-continuous is **algorithmically impossible**.

Blind MDPs: no signals guarantees continuity

Theorem (Stability of invariant distribution, O'Cinneide 1993)

Consider an irreducible stochastic matrix Δ . Computing the stable distribution

$$p^{\top} = p^{\top} \Delta$$

is a stable operation.

The proof is by induction on the dimension of Δ , possible thanks to a characterization of the limit

Theorem (Stability of discounted occupation times, Solan 2003)

Consider a Markov Chain with a starting state. The ratio of λ -discounted occupation times at a state s is a rational function of the transition probabilities, i.e., for $\lambda > 0$

$$\delta \mapsto \frac{\operatorname{time}_{\lambda}(s,\delta)}{\operatorname{time}_{\lambda}(s,\widetilde{\delta})} = \frac{\operatorname{poly}_{s}(\delta,\widetilde{\delta})}{\operatorname{poly}_{s}(\delta,\widetilde{\delta})}.$$

From this result, we conclude value- and weak strategy-continuity for (fully-observable) MDPs (and zero-sum stochastic games).

Blind MDPs: Belief dynamic

h

The belief update in blind MDPs is directly given by the transition. For each action a, define the matrix

$$(M_a)_{s,s'} := \delta(s,a)(s').$$

After playing actions a, b, a, ..., the beliefs are

$$p_1^{\top}$$
 $p_1^{\top}M_a$ $p_1^{\top}M_aM_b$ $p_1^{\top}M_aM_bM_a$...
For similar matrices \widetilde{M}_a , the beliefs in the corresponding similar blind MDP are

$$p_1^{\top} \qquad p_1^{\top} \widetilde{M}_a \qquad p_1^{\top} \widetilde{M}_a \widetilde{M}_b \qquad p_1^{\top} \widetilde{M}_a \widetilde{M}_b \widetilde{M}_a \qquad \dots$$

How different can they be?

Definition (Belief-continuity)

A blind MDP is belief-continuous if, for every $\varepsilon > 0$, there exists $\xi > 0$ such that, for all $\widetilde{\Gamma}$ such that dist $(\Gamma, \widetilde{\Gamma}) \leq \xi$,

$$\sup_{\substack{n\geq 1\\ a(i)\}_{i\in[n]}}} \operatorname{dist}\left(M_{a(1)}\cdot\ldots\cdot M_{a(n)}, \widetilde{M}_{a(1)}\cdot\ldots\cdot \widetilde{M}_{a(n)} \right) \leq \varepsilon \,.$$

Lemma

If a blind MDP is belief-continuous, then it is XXXX continuous.

Belief-continuity

Theorem

Every blind MDP is belief continuous.

Focus on the *n*-th step. Define

$$p^{\top} \coloneqq p_1^{\top} M_{a(1)} \cdot \ldots \cdot M_{a(n)}$$
$$\widetilde{p}^{\top} \coloneqq p_1^{\top} \widetilde{M}_{a(1)} \cdot \ldots \cdot \widetilde{M}_{a(n)}$$

We would like that, for all $\varepsilon > 0$, we can choose $\xi > 0$ so that, for all actions *a*,

$$\mathsf{dist}\left(\boldsymbol{p}^{\top}, \widetilde{\boldsymbol{p}}^{\top}\right) \leq \varepsilon \qquad \mathsf{and} \qquad \mathsf{dist}\left(\boldsymbol{p}^{\top} \boldsymbol{M}_{\boldsymbol{a}}, \widetilde{\boldsymbol{p}}^{\top} \widetilde{\boldsymbol{M}}_{\boldsymbol{a}}\right) \leq \varepsilon$$

A stronger notion is the invariant

$$\mathsf{dist}\left(\boldsymbol{p}^{\top}, \widetilde{\boldsymbol{p}}^{\top}\right) \leq \varepsilon \qquad \Rightarrow \qquad \mathsf{dist}\left(\boldsymbol{p}^{\top} \boldsymbol{M}_{\boldsymbol{a}}, \widetilde{\boldsymbol{p}}^{\top} \widetilde{\boldsymbol{M}}_{\boldsymbol{a}}\right) \leq \varepsilon$$

Blind MDPs: Belief dynamic

Consider stochastic matrices $\{M_i : i \in \mathcal{I}\}\$ where the smallest strictly positive transition is uniformly bounded

$$M_i(s,s') > 0 \quad \Rightarrow \quad M_i(s,s') > \delta_{\min}$$

Consider similar matrices $\{\widetilde{M}_i : i \in \mathcal{I}\}.$

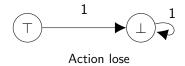
$$p_1^\top \qquad p_1^\top M_{i(1)} \qquad p_1^\top M_{i(1)} M_{i(2)} \qquad p_1^\top M_{i(1)} M_{i(2)} M_{i(3)} \qquad \dots$$
$$p_1^\top \qquad p_1^\top \widetilde{M}_{i(1)} \qquad p_1^\top \widetilde{M}_{i(1)} \widetilde{M}_{i(2)} \qquad p_1^\top \widetilde{M}_{i(1)} \widetilde{M}_{i(2)} \widetilde{M}_{i(3)} \qquad \dots$$

They can not differ by much!

Thank you!

Motivating example

Action win



Result: This POMDP is not weakly strategy-continuous. **Proof:** There is a fragile approximately optimal strategy.

Consider $t \ge 1$ large enoughand the strategy that plays $A_1 = A_2 = \ldots = A_t = win$, and, if *lose* has been played, then $A_{m+1} = win$, if only win has been played, for $m \ge t$,

$$A_{m+1} = lose \quad \Leftrightarrow \quad |\{i \in [2..(m+1)] : Z_i = z_+\}| \ge (1 + m^{-1/4}) \frac{m}{2}$$

Proof: Fragile approximately optimal strategy

Lemma (Approximate optimality)

Consider Γ the previous POMDP. Then,

$$\mathbb{P}^{\sigma}_{p_1}[\Gamma](\exists m \geq 1, A_m = \textit{lose}) \leq \varepsilon$$
.

Lemma (Fragility)

Consider $\widetilde{\Gamma}$ a small perturbation of $\Gamma.$ Then,

$$\mathbb{P}_{p_1}^{\sigma}[\widetilde{\Gamma}](\exists m \geq 1, A_m = \textit{lose}) = 1.$$

Theorem

There exists a POMDP for each of the following combinations.

Example	Continuity			
слатріе	Value	Weak strategy	Strong strategy	
#1	Yes	Yes	No	
#2	No	Yes	No	
#3	No	No	No	

Remarks:

- All continuities are different
- The exact relationship between the continuity concepts is not fully characterized.

Characterizing continuity of POMDPs

Theorem (Mathematical characterization, open)

A POMDP is XXXX continuous if and only if ???

Theorem (Algorithmic impossibility)

The problem of deciding whether a given POMDP is XXXX continuous is undecidable.